3.326 \(\int \frac{1}{x^4 (a+b x^4+c x^8)} \, dx\)

Optimal. Leaf size=365 \[ \frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{1}{3 a x^3} \]

[Out]

-1/(3*a*x^3) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/
(2*2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(
-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*
c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4))
+ (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a
*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.398978, antiderivative size = 365, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {1368, 1422, 212, 208, 205} \[ \frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + b*x^4 + c*x^8)),x]

[Out]

-1/(3*a*x^3) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/
(2*2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(
-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(1 - b/Sqrt[b^2 - 4*a*
c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4))
+ (c^(3/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a
*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1368

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a +
 b*x^n + c*x^(2*n))^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (a+b x^4+c x^8\right )} \, dx &=-\frac{1}{3 a x^3}+\frac{\int \frac{-3 b-3 c x^4}{a+b x^4+c x^8} \, dx}{3 a}\\ &=-\frac{1}{3 a x^3}-\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 a}-\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 a}\\ &=-\frac{1}{3 a x^3}+\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 a \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 a \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 a \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 a \sqrt{-b+\sqrt{b^2-4 a c}}}\\ &=-\frac{1}{3 a x^3}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0433128, size = 75, normalized size = 0.21 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 c \log (x-\text{$\#$1})+b \log (x-\text{$\#$1})}{\text{$\#$1}^3 b+2 \text{$\#$1}^7 c}\& \right ]}{4 a}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + b*x^4 + c*x^8)),x]

[Out]

-1/(3*a*x^3) - RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[x - #1] + c*Log[x - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ]/(4
*a)

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 62, normalized size = 0.2 \begin{align*} -{\frac{1}{3\,a{x}^{3}}}+{\frac{1}{4\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{ \left ( -{{\it \_R}}^{4}c-b \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(c*x^8+b*x^4+a),x)

[Out]

-1/3/a/x^3+1/4/a*sum((-_R^4*c-b)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Fricas [B]  time = 7.61082, size = 13495, normalized size = 36.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

1/12*(12*a*x^3*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c +
 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^
6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*arc
tan(-1/4*(2*sqrt(1/2)*((a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7*c^2 - 364*a^10*b^5*c^3 + 560*a^11*b^3*c^4 - 320*
a^12*b*c^5)*x*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a
^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)) + (b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 -
 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7)*x)*sqrt(-(b^7 - 7*a*b^5*c
 + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c
^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 -
 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)) - (b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c
^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 + (a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7
*c^2 - 364*a^10*b^5*c^3 + 560*a^11*b^3*c^4 - 320*a^12*b*c^5)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^
3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c
^3)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12
- 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^
15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2))*sqrt((2*(b^6*c^4 - 5*a*b^4*c
^5 + 6*a^2*b^2*c^6 - a^3*c^7)*x^2 + sqrt(1/2)*(b^12 - 13*a*b^10*c + 64*a^2*b^8*c^2 - 147*a^3*b^6*c^3 + 156*a^4
*b^4*c^4 - 66*a^5*b^2*c^5 + 8*a^6*c^6 + (a^7*b^9 - 14*a^8*b^7*c + 72*a^9*b^5*c^2 - 160*a^10*b^3*c^3 + 128*a^11
*b*c^4)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6
)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3
*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*
a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4
- 8*a^8*b^2*c + 16*a^9*c^2)))/(b^6*c^4 - 5*a*b^4*c^5 + 6*a^2*b^2*c^6 - a^3*c^7)))*sqrt(sqrt(1/2)*sqrt(-(b^7 -
7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*
a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*
b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))/(b^6*c^5 - 5*a*b^4*c^6 + 6*a^2*b^2*c^7 - a^3*c
^8)) - 12*a*x^3*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c
+ 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a
^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*ar
ctan(-1/4*(2*sqrt(1/2)*((a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7*c^2 - 364*a^10*b^5*c^3 + 560*a^11*b^3*c^4 - 320
*a^12*b*c^5)*x*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 +
a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)) - (b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2
- 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7)*x)*sqrt(sqrt(1/2)*sqrt(-
(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*
c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 4
8*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2
 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c
^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(
a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)) + (b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*
c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 - (a^7*b^11 - 17*a^8*b^9*c + 113*a^9*b^7*c^2 - 364*a^10*b
^5*c^3 + 560*a^11*b^3*c^4 - 320*a^12*b*c^5)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^
4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1
/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 -
10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15
*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a
^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62
*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^1
7*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2))*sqrt((2*(b^6*c^4 - 5*a*b^4*c^5 + 6*a^2*b^2*c^6 - a^3*c^7)*x^2 +
 sqrt(1/2)*(b^12 - 13*a*b^10*c + 64*a^2*b^8*c^2 - 147*a^3*b^6*c^3 + 156*a^4*b^4*c^4 - 66*a^5*b^2*c^5 + 8*a^6*c
^6 - (a^7*b^9 - 14*a^8*b^7*c + 72*a^9*b^5*c^2 - 160*a^10*b^3*c^3 + 128*a^11*b*c^4)*sqrt((b^12 - 10*a*b^10*c +
37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^
16*b^2*c^2 - 64*a^17*c^3)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 1
6*a^9*c^2)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*
c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))/(b^6*
c^4 - 5*a*b^4*c^5 + 6*a^2*b^2*c^6 - a^3*c^7)))/(b^6*c^5 - 5*a*b^4*c^6 + 6*a^2*b^2*c^7 - a^3*c^8)) - 3*a*x^3*sq
rt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt
((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6
- 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*log(-(b^6*c^2 - 5*a*
b^4*c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*x + 1/2*(b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 25*a^3*b^3*c^3 + 4*a^4*b*c^4 -
(a^7*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6
*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))
*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*s
qrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b
^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))) + 3*a*x^3*sqrt(s
qrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^
12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12
*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*log(-(b^6*c^2 - 5*a*b^4*
c^3 + 6*a^2*b^2*c^4 - a^3*c^5)*x - 1/2*(b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 25*a^3*b^3*c^3 + 4*a^4*b*c^4 - (a^7
*b^6 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3
 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqr
t(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt(
(b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 -
 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))) - 3*a*x^3*sqrt(sqrt(
1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 -
 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^1
5*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*log(-(b^6*c^2 - 5*a*b^4*c^3
+ 6*a^2*b^2*c^4 - a^3*c^5)*x + 1/2*(b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 25*a^3*b^3*c^3 + 4*a^4*b*c^4 + (a^7*b^6
 - 10*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 4
6*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sq
rt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^1
2 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*
a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))) + 3*a*x^3*sqrt(sqrt(1/2)
*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 - 10*
a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^
4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))*log(-(b^6*c^2 - 5*a*b^4*c^3 + 6*
a^2*b^2*c^4 - a^3*c^5)*x - 1/2*(b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 25*a^3*b^3*c^3 + 4*a^4*b*c^4 + (a^7*b^6 - 1
0*a^8*b^4*c + 32*a^9*b^2*c^2 - 32*a^10*c^3)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^
4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))*sqrt(sqrt(1
/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)*sqrt((b^12 -
10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(a^14*b^6 - 12*a^15
*b^4*c + 48*a^16*b^2*c^2 - 64*a^17*c^3)))/(a^7*b^4 - 8*a^8*b^2*c + 16*a^9*c^2)))) - 4)/(a*x^3)

________________________________________________________________________________________

Sympy [A]  time = 39.6987, size = 277, normalized size = 0.76 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{11} c^{4} - 16777216 a^{10} b^{2} c^{3} + 6291456 a^{9} b^{4} c^{2} - 1048576 a^{8} b^{6} c + 65536 a^{7} b^{8}\right ) + t^{4} \left (- 28672 a^{5} b c^{5} + 71680 a^{4} b^{3} c^{4} - 59136 a^{3} b^{5} c^{3} + 22016 a^{2} b^{7} c^{2} - 3840 a b^{9} c + 256 b^{11}\right ) + c^{7}, \left ( t \mapsto t \log{\left (x + \frac{32768 t^{5} a^{10} c^{3} - 32768 t^{5} a^{9} b^{2} c^{2} + 10240 t^{5} a^{8} b^{4} c - 1024 t^{5} a^{7} b^{6} - 36 t a^{4} b c^{4} + 120 t a^{3} b^{3} c^{3} - 108 t a^{2} b^{5} c^{2} + 36 t a b^{7} c - 4 t b^{9}}{a^{3} c^{5} - 6 a^{2} b^{2} c^{4} + 5 a b^{4} c^{3} - b^{6} c^{2}} \right )} \right )\right )} - \frac{1}{3 a x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**11*c**4 - 16777216*a**10*b**2*c**3 + 6291456*a**9*b**4*c**2 - 1048576*a**8*b**6*c +
 65536*a**7*b**8) + _t**4*(-28672*a**5*b*c**5 + 71680*a**4*b**3*c**4 - 59136*a**3*b**5*c**3 + 22016*a**2*b**7*
c**2 - 3840*a*b**9*c + 256*b**11) + c**7, Lambda(_t, _t*log(x + (32768*_t**5*a**10*c**3 - 32768*_t**5*a**9*b**
2*c**2 + 10240*_t**5*a**8*b**4*c - 1024*_t**5*a**7*b**6 - 36*_t*a**4*b*c**4 + 120*_t*a**3*b**3*c**3 - 108*_t*a
**2*b**5*c**2 + 36*_t*a*b**7*c - 4*_t*b**9)/(a**3*c**5 - 6*a**2*b**2*c**4 + 5*a*b**4*c**3 - b**6*c**2)))) - 1/
(3*a*x**3)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{8} + b x^{4} + a\right )} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(1/((c*x^8 + b*x^4 + a)*x^4), x)